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On the non-linear energy transfer in 
a gravity-wave spectrum 

Part 1. General theory 

By IS. HASSELMANN 
Institute for Naval Architecture, University of Hamburg? 

(Received 18 August 1961) 

The energy flux in a finite-depth gravity-wave spectrum resulting from weak 
non-linear couplings between the spectral components is evaluated by means 
of a perturbation method. The fifth-order analysis yields a fourth-order effect 
comparable in magnitude to the generating and dissipating processes in wind- 
generated seas. The energy flux favours equidistribution of energy and vanishes 
in the limiting case of a white, isotropic spectrum. The influence on the equi- 
librium structure of fully developed wave spectra and on other phenomena in 
random seas is discussed briefly. 

Introduction 
The last years have seen considerable progress in our understanding of the 

linear processes responsible for the initial growth of wind-generated ocean waves. 
Comparatively little is still known, however, of the non-linear processes- which 
play an important role in the later stages of development and largely determine 
the equilibrium state finally attained by the sea. The principal non-linear effects 
can probably be reduced to two independent processes: 

(1)  the breaking of waves due to the occurrence of local instability when the 
downward acceleration of water particles exceeds the gravitational accelera- 
tion g, and 

(2) the energy transfer in the spectrum resulting from non-linear interactions 

Although the first process represents one of the principal causes of energy 
dissipation in the spectrum and is thus of considerable importance, we shall be 
concerned in this paper only with the second process. 

A non-linear transfer of energy between different wave components is to  be 
expected from the general behaviour of coupled mechanical systems. In  the 
case of a wave spectrum, the non-linear couplings are small and can hence be 
analysed with the aid of conventional perturbation expansions about the known 
linear solution. The existence of unsteady third-order perturbations repre- 
senting a continuous transfer of energy between discrete wave components has 
been demonstrated by Phillips (1960), and the rate of growth of the tertiary 
wave has since been evaluated explicitly by Longuet-Higgins (1962) for two 

t Present address : Institute of Geophysics and Planetary Physics, University of 
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between different wave components. 
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intersecting wave trains. In  the case of a continuous spectrum, however, we 
shall find that the perturbation analysis has to be extended further to the 
fifth order in order to determine the energy flux resulting from the non-steady 
interactions. The step from the discrete interactions obtained by perturbation 
analysis of the equations of motion to the energy transfer in a continuous spec- 
trum is then based on certain asymptotic integral formulae ($3)  which represent, 
in a sense, the key point of the analysis. 

It is known from the turbulence problem that the energy transfer due to 
non-linear interactions between random components in an energy spectrum 
cannot be evaluated without further knowledge of the underlying statistical 
process. In  contrast to the turbulence problem, this apparently presents little 
difficulty for gravity waves, as the interactions are weak, and it is generally 
assumed (and can, in fact, be deduced from a loose application of the Central 
Limit Theorem) that in the linear approximation a wind-generated random sea 
is Gaussian. 

The final expression for the energy flux can be interpreted in terms of quad- 
ruple interactions in which energy is transferred from three ‘active ’ wave com- 
ponents to a ‘passive ’ fourth component, which receives energy from the ‘active ’ 
components but has no direct influence on the interaction. The net result of 
all interactions is to redistribute the energy of the spectrum more uniformly 
over all wave-numbers, the energy flux vanishing in the limiting case of an iso- 
tropic, white spectrum. For wave spectra in the latter stages of development 
with pronounced maxima at low wave-numbers, this generally leads to an energy 
flux from the peak to shorter waves, similar to the non-linear energy flux in 
a turbulence spectrum. Some energy, however, will also flow from the peak 
to still longer waves, and it has been suggested that this (or perhaps the 
steady second-order interactions) may be the cause for the extremely long, low- 
energy waves observed after severe storms (Munk 1961). As the wavelengths 
of these waves are comparable with, or greater than, the ocean depth, the 
analysis has been carried through in the following generally for waves of finite 
depth. 

The characteristic time scale of the energy flux is proportional to the fourth 
power of the root-mean-square wave s1ope.i This gives an estimated order of 
magnitude of the energy flux comparable for fully developed spectra to the 
generating and dissipating processes in a sea. A rough computation for a typical 
fully developed spectrum yielded, as expected, an energy transfer from low to 
high wave-numbers, with characteristic times of a few fractions of an hour for 
the shorter waves and a few hours for the longer waves (Hasselmann 1961). 

1. Perturbation analysis 
We consider the irrotational motion of a horizontally unbounded ideal fluid 

of finite constant depth h with a free surface z = c(z, y, t ) ,  where x, y and z denote 
Cartesian co-ordinates, with the z-axis directed vertically upwards. Neglecting 

It should be pointed out that this cannot be derived from an analysis of the discrete 
interactions alone, aa these lead to a linear increase in the amplitudes of the perturbations, 
whereas in a continuous spectrum the energy changes linearly. 
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surface tension, the velocity potential $(x, t) and surface deviation c are then 
determined by the (non-linear) system of equations 

V24 = 0 for z < 6 (continuity equation), (1.1) 

(kinematical boundary condition 

(kinematical boundary condition 

(dynamical boundary condition 

(1.2) 

(1.3) 

(1.4) 

a# - = 0  for z = - h  aZ a t  the bottom), 

" a ' + ~ 6 . ~ ~ = ~  for z = c  --- 
a t  the free surface), 

at the free surface) 

at ax 

?t+gc++(Vq5)2 a4 = 0 for z = 5 

and @ , o )  = c o ( i )  for t = 0, I (1.5) 
(initial conditions), i (1.6) 2 ( z ,  y,cO,o) = --o(%) 84 for z = co, t = 0, 

a7 a7 

where 7 is the normal a t  the free surface and co and a#,/a7 are the given initial 
values of the free surface and the normal free-surface velocity, respectively. 
The tilda - denotes two-dimensional vectors or operators in the zy-plane. 

Assuming small wave slopes, an approximate solution of (1.1)-(1.6) can be 
obtained by expanding # and 5 in the perturbation series 

# = 1#+2#+3$+..., 

6 = ,c+25+3c+..., 

where the perturbation parameter (the wave slope) has been drawn into the 
perturbation functions, the subscripts thus denoting the order of magnitude of 
the functions. The linear equations (1.1) and (1.2) then yield 

V2,$ = 0 for z < c, (1.9) 

(1.10) 

Expanding (1.3) and (1.4) in z about the undisturbed free surface x = 0 and 
substituting (1.7) and (1.8), we obtain boundary conditions for the perturbation 
functions a t  x = 0, 

(1.12) 
where the sums are taken over all combinations of index groups 

P 

5 = 1  
v = (vl, v2, ..., v,) with 2 < p < n and C. vj = n. 

For p = 2 the factors [(p - 2)!]-1v1cv,c. .. vp-9c in the second terms of the sums 
are to be taken as unity. 

31-2 
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Instead of (l.ll), it is more convenient to use the linear combination 
a/at (1.12)-9 (l.ll), in which ,6 has been eliminated: 

In  a similar manner, (1.5) and (1.6), together with (1.4), yield initial conditions 

(1.14) 

-- '1' - -gco(g) for z = 0,  t = 0, (1.15) 
at 

and for n. 3 2, 

(1.16) 
for z = 0, t = 0. 

(1.17) 

initial values of per- 

order lower than n 

Equations (1.9)-(1.17) are linear in the highest perturbation order and can 
hence be solved for successive orders. 

We consider now the particular initial-value problem in which the initial 
functions a+,,/ar] and 5, are random, homogeneous functions of 2. The per- 
turbation solutions & and ,c will then also be random and homogeneous in %. 
They can thus be represented as Fourier-Stieltjes integrals with respect to a 
two-dimensional wave-number k. Applying (1.9) and (1. lo), we then have 

(1.18) 

where approximating Fourier sums have been introduced (and will be used 
throughout) in place of exact Fourier-Stieltjes integrals, as they allow a more 
condensed presentation of the multiple integrals occurring in the later analysis. 
As ,$ and ,[ are real, we have 

n$k = n$Tk,  (1.20) 

n z k  = nz"_- (1.21) 

Substituting (1.18) and (1.19) into (1.12) and (1.13), we obtain the general 
differential equations for the perturbation amplitudes ,Zk and n$k : 

[sinh (kp-lh) sinh (kph)]  
+ v l z k l v . 2 k ~ ~ ~ ~ v p - P  2 

2(p - 2)! cosh (kp-.lh) 
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(1.23) 

where wk = J(gk tanh (kh)). (1.24) 

For n = 1, (1.22) and (1.23) have the well-known linear solutions 

I$&) = l$p eiokf + l$L e-iwkf, 

lzk(t) = lz, e i w k f  + $2 e--iyt, 

(1.25) 

(1.26) 

iw, 
with lZ$ = & - 1$$ (B$ constant) 

and, on account of (1.20) and (l .21),  

9 

I$$ = (l$Zk)*, (1.27) 

122 = ( l z = k ) * .  (1.28) 

The sign indices refer to the direction of propagation of the waves relative to the 
wave-number direction. The wave amplitudes l$k+ are determined by the initial 
conditions (1.14) and (1.15). Assuming the perturbation solutions of order lower 
than n already expressed in terms of the linear solutions, the differential equation 
(1.23) for n$k will then have the general form 

81, 82, ..., Sn 

with initial conditions 

where the si denote sign indices. 
From some order n onwards we shall now expect equation (1.29) to have non- 

stationary (resonant) solutions which grow continually with time, representing 
finally an appreciable modification of the initial sea state. The aim of our 
investigation will then be to determine this change in the sea state. At first sight, 
a basic difficulty appears to lie in our method of approach, which ceases to be 
applicable just at the point where the perturbation solutions begin to become of 
interest, i.e. for perturbations comparable in magnitude to the linear solution. 
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This difficulty is overcome by deriving from our perturbation analysis an 
integro-differential equation for the rate of change of the sea state, the sea state 
for finite times after the initial time then being obtained by integration. 

At this point we introduce the basic assumption that in the linear approxi- 
mation the initial sea state is not only homogeneous, but also stationary and 
Gaussian. This implies that the first-order amplitudes are statistically indepen- 
dent for different wave-numbers and different directions of propagation. (The 
assumption is almost, but not quite, equivalent to assuming the initial functions 
c0 and a$,/aq to be Gaussian. In  this case the first-order amplitudes are statistic- 
ally independent for different wave-numbers, but not necessarily for opposite 
directions of propagation of the same wave-number, i.e. the sea is not necessarily 
stationary.) The Gaussian property of the sea follows from a loose application 
of the Central Limit Theorem provided the time of development of the sea is 
large in comparison to the periods occurring in the spectrum (which is a necessary 
condition for describing the sea as a quasi-homogeneous, quasi-stationary process 
in any case). 

As a Gaussian sea is described completely by its two-dimensional energy 
spectrum, our aim will thus be to determine the change in the initial energy 
spectrum brought about by the non-steady higher-order perturbations. As a 
first step we shall then obviously need to determine the energy of the sea in terms 
of the perturbation functions considered above. 

2. The energy of the sea 
The mean energy of the sea per unit projection area is 

E = Ekin + Epot = - p(V$)'dz + i p g p ,  (2.1) 

where the bars denote ensemble means. Using the Gauss formula and (l.l),  
(2.1) can be written in the form 

sc - h  

or, developing the first term about x = 0, 

If E is now developed in a perturbation series 

E = ,E+,E+,E+ ..., (2.4) 

we can obtain the terms ,E by substituting the perturbation and Fourier develop- 
ments of $ and Sinto (2.3). The first term is then determined by the linear solution 

or, in integral representation, 

2 8  = Jj;: 2 W )  dlc,dk,, 
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where ,H(k) is the two-dimensional energy spectrum (in the linear approximation), 
defined in the sense that only waves travelling in the positive k-direction con- 
tribute to the spectrum a t  k. 

The perturbation terms of odd order depend only on odd mean products of the 
first-order perturbation amplitudes. For a Gaussian sea these vanish : 

(2.7) 3E = 5E = ,E = ... = 0. 

For the next two even-order terms we find 

The indicated additional sums contain mean products of three or more per- 
turbation amplitudes. It will be shown later that these remain constant and 
therefore have no influence in the present problem. We shall find further that 
*E also contains only constant terms, so that the energy transfer is finally 
determined by the terms in the first two sums in 6E. We note that, on account of 
(1.22), corresponding terms in the two sums would be equal, just as in the linear 
approximation, if the were periodic with their natural frequency wk (except 
for additional terms entering in the third sum). We shall find later that the non- 
stationary contributions to 6E arise solely from such free-wave components, 
so that it will suffice then to investigate only the first sum in (2.9). The problem 
thus reduces to the analysis of the covariance products in (2.9), which involve 
all perturbation amplitudes from the first to the fifth orders. This is essenti- 
ally a statistical problem, the solution of which is based on certain asymptotic 
integral formulae which will be considered in the next section. 

3. The asymptotic response of an undamped oscillator to stationary 
and non-stationary random excitations 

Let 4 ( w ,  w ' ;  t )  be the solution of the differential equation 

with the initial values $ = d$-/dt = 0 for t = 0. We have 

fll(w,O'; t )  = t eiw.1 eiWt - e-iod 
for d2 = w2, 

If g(w)  is an arbitrary continuous real function it can then be shown that 

(3.3) 
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or, in terms of Dirac functions, 

a n 
lim-{4(w,wr; t)4(w, -d; t ) }  = - - - ( ~ ( W + O ‘ ) + ~ ( W - W ’ ) ) .  2w2 (3.5) 
t - tm dt 

It can be shown further that 

We shall use (3.6) later in the more general form 

with w = @(Al, A,, ..., A%), w’ = w‘(Al,A2, ..., A,) and a(w’ 
surfaces w’ _+ w = 0, where n denotes the surface normal. 

w ) / a n  + 0 on the 

In particular, if is a solution of the differential equation 

where r(t) is a stationary (not necessarily real) random function with a con- 
tinuous spectral density functionf(o), we find by applying (3.4) and (3.6) to the 
spectral representation of 

and 

(3.9) 

(3.10) 

An expression similar to (3.9), in which the spectral densities were expressed in 
terms of their correlation integrals, was derived by Phillips (1 957). According 
to (3.9), the asymptotic response of an undamped oscillator to stationary random 
excitation is non-stationary , the mean-square amplitude increasing at  a rate 
proportional to the spectral density of the excitation at the resonant frequency. 

We consider further the solution 4 ( w ,  w ‘ ,  w”,  w“;  t) of the differential equation 

(3.11) 

with the initial values @ = d$/dt = 0 for t = 0. We have 

where the indicated additional terms are steady oscillations which remain 
bounded in the case of resonance in 4, i.e. for w ” ~  = w ” ’ ~ .  

I n  the case of resonance in both Y2 and 4, we find 

t2exp [ i (d  +w”’)t] i t ( 2 w N ’ + d )  
8w”’(w’ + w”’) -- w”’2(w’ + w ) Y2 = - 2exp[i(w‘+w”)t]+ ... (3.13) 

for d ” 2  = wi2,  (a‘ + 6 ~ ” ’ ) ~  = w2, where the additional terms are again bounded 
steady oscillations. 
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Integral expressions similar to (3.4) and (3.6) can be considered generally for 
the solution 4, yielding information on the asymptotic response of an un- 
damped oscillator to forcing functions which can be represented as the product 
of a stationary random function and a non-stationary random oscillation of the 
type $l. For the later analysis, however, we shall require only the relation 

lim - d {Re [e-i&4(ol - w‘, w”, w + w’;  t ) ] }  
t - t a  dt 

7.r 
- _ -  { 6 ( w + w r + w ” )  +6(w+w‘-w’ ’ ) } .  (3.14) 

4o (o  +or)  

The derivation of the asymptotic relations (3.5), (3.6) and (3.14) will not begiven. 
We remark only that the &-functions enter on account of the rapid oscillation of 
the exponential terms, which cause all contributions to the integrals to vanish 
for large t except in the neighbourhood of the poles of the integrands. The con- 
tributions from the poles can then be evaluated by contour integration in the 
complex frequency plane. 

4. The energy transfer 

results of the previous section. 
We investigate first the energy perturbation terms 4E and ,E, applying the 

(a)  The  term 4E 
The term 4E depends on the first three perturbation amplitudes. For the second- 
order amplitude 2@k we find from (1.22), (1.23) 

81, s* 

with Dp22 = i ( w l + w 2 )  (klk2tanhklhtanhk2h-(kl.k2)) 

1 
k k, = ~ { ~ k ~ ~ k 2 ~ ~ ~ ~ 2 W l ~ ~ ( W ~ ~ o ~ ~ W 1 W 2 ~ } ~  (4.4) 

Esy? 2g 

where the abbreviation oj = sjwk, has been introduced. 
The terms in the sum (4.1) excite steady oscillations in ,akif (slwkl + s2f4)2 $. 6 ~ ;  

and non-steady resonant oscillations if (Slwk, +s2@ka)2  = of. For finite-depth 
gravity waves the natural frequency curve ok = (gk tanh kh)t  = Sl(k) passes 
through the origin and is convex for k > 0. From these properties it follows that 

w, + k,) < fi(k,) + Q(kJ* 

Ikl+k,l < k1+k2 

As Q ( k )  is also monotonic, the inequality 

yields further W k l +  k2l) < f W l +  k2). 
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Combining both inequalities, we have 

wkl+ka wkl+oka- 

The substitution k' = k, + k,, k" = - k, then yields 

(4.5) 

The equality sign on the left holds only for k, = 0 or k, + k, = 0, the equality 
sign on the right only for k, = 0 or k, = 0. For these cases Dz;,2a vanishes. 
Hence none of the exciting terms in (4.1) satisfy the resonance condition 
(s1wkl+s#ka)2 = wz, so that the solution Z@k is composed entirely of steady 
harmonic oscillations 

51.8. 

The free oscillations in the second sum are determined by the initial conditions. 
We shall expect, intuitively, initial conditions of order higher than the first to 
have no influence for our problem, the rate of change of the sea state being 
determined (to the first contributing order) only by forced oscillations of the 
type in the first sum. On the other hand, it is not immediately evident mathe- 
matically that lower-order free oscillations do not generate non-steady resonant 
oscillations in the higher-order perturbation solutions which are comparable in 
their influence on the sea state to the resonant oscillations generated by the forced 
lower-order oscillations. We shall, none the less, neglect all free oscillation terms 
depending on initial values of higher order than the first in the following, mainly 
because the number of these terms increases so rapidly with the perturbation 
order that the equations soon become extremely complicated if all are included. 
It is not difficult to see a posteriori that the terms do, in fact, leave the final 
result unchanged. 

Since 2@k contains only steady oscillations, the term ),@,J2 in the first sum in 
(2.8) remains constant. From (1.22), the term 12Zkl2 in the second sum then also 
remains constant. The indicated second sum contains mean products of three 
and more perturbation amplitudes and hence cannot contain perturbation 
amplitudes of higher order than the second. The terms in this sum are therefore 
also stationary. There remains the term 2Re(1@-k3@k) in the first sum and 
2Re(,Z_,,Zk) in the second sum. From (1.23), (4.2) and (4.7) we find 

___ 
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with 

(4.10) 

andwhere the abbreviation w j  = sjwk, has again beenused. &,;g,sd, is symmetrical 
in the last two indices, so that .Qd;k,28 is then symmetrical in all indices. 

we shall require later the coefficient Dg;;;;;;;, which is defined 
formally in the same way as pkt$$8 except that in place of the linear solutions 

exp ( - isj Wk,t) the general expressions Qk, exp ( - iw j  t)  are substituted in 
(1.23), the frequencies w j  being treated as independent variables. (Dg:$';;Z differs 
from DZ;,skp28 as expressed in terms of wj = Sjwk$ in (4.9) and (4.10), since in these 
expressions w j  is not independent of kj, and free use of the identity 

Besides 

wJ = gkj tanh k j h  

has been made in simplifying (4.10).) The coefficient D;;$;Z does not enter into 
the final equation and thus need not be given explicitly. 

The third-order perturbation solution 3@k is the fist to contain non-steady 
resonant components, as it can readily be verified that with three frequencies 
the resonance condition (81w,l+s,&Ji,+83(dks)2 = w i  can be satisfied with a 
suitable choice of kj and sj. None the less, we shall find that the term 

2Re (l@-k 3@k) 

in 4E remains constant, as the non-steady components of 3@k are exactly 90' 
out of phase with the corresponding components of 1@k. For, from the Gaussian 
property of the sea, it  follows that two linear amplitudes l@21, ,@g are statistic- 
ally independent unless they are a conjugate pair, with (%) = (12). Making use 
of this property and allowing for the symmetry of Dg2;,2,, we find 

~- 
2Re(,@-k3@k) = 6Re{C 11@g12 I ~ @ ~ \ ' ~ ( ~ k ,  -SsWk; t)eXp (;S(+t)). 

81.8 ti (4.11) 

According to (3.3), the non-steady component of the resonant oscillation 
4 ( w k 7  -swk; t) in (4.11) is 90" out of phase with the oscillation e--i80kt. Since the 
coefficient DZ,;$;,X is real, the non-steady components therefore contribute only 
to the imaginary part of the sum in (4.11), and thus the term 2Re ( 1 @ 4 3 @ k )  in 
4E also remains constant. In  the same way, using (1.22), it can be shown that 
2Re ( m k 7  remains constant. 
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The first perturbation term 4E thus represents a correction term arising from 
the steady higher-harmonic components, but not the non-linear energy transfer 
we are seeking for. The term has been analysed in greater detail by Tick (1958) 
(with the exception of the terms depending on the third-order perturbations). 

The stationarity of 4E is a consequence of the steadiness of the second-order 
perturbations, which follows from the inequality (4.6). This, in turn, is in essence 
equivalent to the fact that for finite-depth gravity waves the group velocity is 
smaller than the phase velocity. In  non-linear systems for which this is not the 
case, e.g. capillary waves, a continuous energy transfer would already occur in 
the term 4E. Thus for capillary waves the non-linear energy transfer is probably 
considerably stronger than for gravity waves. 

( b )  The term ,E 
In  the course of our analysis of the next term ,E we shall need to extend the 
perturbation analysis to the fifth order. With reference to the remark following 
equation (2.9), we investigate first only the sum containing the amplitudes of 
the potential perturbations. Allowing again for the statistical independence of 
the first-order amplitudes, we find for the first term in this sum depending only 
on the third-order perturbations 

where use has been made of the symmetry of pk$i,2a in grouping the possible 
combinations of three conjugate index pairs occurring in the six first-order 
amplitudes involved in the mean product }3@k12. 

According to (3.4), the first sum increases linearly in t for large t, whereas from 
(3.3) the second sum increases quadratically. Hence the second sum will dominate 
ultimately. We shall find later, however, that the second sum cancels against 
a further term in ,E, so that only the first sum represents a genuine transfer term. 

In  both sums, the non-steady components are resonant oscillations with 
frequencies fw,. We can thus separate the non-steady terms in 3@k into two 
components 3@2 e-iwrt and 3@g eiY t ,  corresponding to the two directions of pro- 
pagation relative to k. If the components corresponding to different directions 
of propagation in (4.12) are then also separated, we obtain, applying (3.4) 
and (3.3), 
where 

(4.13) 

(4.14) 

and 

s1, sn 
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For the next term 2Re (2@+4@k) in (2.9) we require the fourth-order amplitudes 
4@k. From (1.23) we find 

81,s.. 81, 8. 

Sl,81,88.S, § w 
{Akl,k2,ks,k, 1( kr+kr+k,' -S2Wkr-S3Wks-S4wka; t ,  exp ( - is lwklt)  

+Bk$2,%,exp [ - i ( s l w k l  fS2@ks+S3wka+s4@k, )  t ]>.  (4.15) 

The first expression in the bracket is due to exciting terms which depend on 
non-steady third-order perturbations, whereas the second expression contains 
the remaining terms depending only on the steady first- and second-order 
perturbations. Of the coefficients we need to know only that they are imaginary 
and that AZ,::S,.g,$, is symmetrical in the last three indices. In  the mean product 
2Re (2a -k  4@k) we need again consider only those terms in which the six index 
groups (i;) involved form three conjugate pairs. Of the four index groups 
belonging to 4@k, two must then necessarily be a conjugate pair. Hence two of 
the frequencies in the exciting terms in (4.15) cancel, and it follows from the 
inequalities (4.6) that the remaining two frequencies can no longer satisfy the 
condition for resonant excitation of 4@k. The second expression in (4.15) thus 
generates steady oscillations which, since 2Q-k is also stationary, yield only 
constant terms in Re (2@-k4@k) and need not be considered further. The first 
expression in (4.15) gives rise to non-steady oscillations in a@k if the factor 
4(wkl+kl+k , ,  - sz%, - S 3 w q  - s4@k,; t )  is a resonant oscillation, but again no 
direct resonant excitation of 4@k takes place and we can apply (3.12) to express 
the solution simply in terms of 4. Allowing for the different combinations of 
conjugate index pairs we obtain 

(4.16) 

The oscillation ~ l ( w k l + k a + k r ,  - s l@kl  -s2wk, - s3wks;  t )  in the first expression in 
(4.16) is non-steady for certain values of ki and si. However, from (3.7) the sum 
(or, in reality, the integral) of the product of this oscillation with thk steady 
oscillation exp [ i (s l@kl + szwk,  + Sgwk,) t] remains constant. The oscillation 
4(ukn, -s2wks; t )  in the second expression is resonant for all terms in the sum. 
In  this case, however, the resonant oscillation is always 90" out of phase with 
the steady oscillation exp [ - i(S2@k,t)]. As the coefficients Akg;,2;,2, and D2,$s 
are both imaginary, the remaining factor in the second expression is real, and 
we hence have the same case as discussed previously for Re (1Q-k 3@k), the non- 
steady components of the second expression yielding no contribution to the 
real part of the sum. The term 2Re ( 2 a - k  4@k) thus remains constant and has no 
influence on the energy transfer. 

-~ 
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In  the same way it can be shown that the terms in the third sum indicated in 
(2.9), involving cubic and higher-power products of perturbations, also remain 
constant. Since the highest-order perturbations occurring in these products are 
of the fourth order, and as direct resonant excitation of the fourth-order per- 
turbations cannot occur for the reasons considered above, the non-steady terms 
of the sum have the same general form 

-_____ 
Re I Il@gI I l@g I (2Mg,$i,%s exp [i(Sl wkl + s2wk2 + s3wkl) t1 

ki, kp,ka 
81,8a, 81 

4 ( w k l + k l + k a ’  -S1Wkl-S2Wkr-S3%S; t ,  +Ng:$i,$sexP (is2%9t)4(wkz9 -s2@kn;  t ) }  
(4.17) 

as (4.16), where the coefficients Ng;$;,$a and N@;,%s are real. The arguments 
of the preceding paragraph can then be applied directly to show that (4.17) 
remains constant. 

There remains the term 2 Re (1Q-k 5@k) in the first sum in (2.9). In  the dif- 
ferential equation for 5@k we need consider only exciting terms containing non- 
steady perturbations of the third and fourth orders, as the remaining terms 
can at  the most give rise to simple resonant oscillations of the type $1, which 
yield only constant terms when correlated with the steady oscillation 1Q-k for 
reasons now apparent from the discussion of the previous terms in 6E. From 
(1.23) it  follows that the perturbation equation for 5@k is then closely similar in 
structure to the equation for 3@k and can be expressed simply in terms of the 
third-order coefficient D%:::,$%* and the coefficient Dp;;;;;: 

exp [ - i(slwkl + S2Wkn) t1 4 ( W k s + k , + k a ,  - S3%s - s4wk, - s5wk,; t ,  
+stationary terms, (4.18) 

where the superscript (a) = S1Wkl, s 2 0 k , ,  s 3 w k s  + s 4 w k ,  +s5yS. In  the mean pro- 
duct l@-k5@k again only those terms contribute in which the six indices 
involved can be grouped into three conjugate pairs. Allowing for the different 
combinations of such pairs and the symmetry of the coefficients we find 
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non-steady components in (4.19) are entirely due to resonant interactions in 
which the perturbation 5@k is excited with its natural frequencies f wk.  We can 
thus write 

and obtain, after separating the components of different propagation directions 
in (4.19), 

5@k = 5@$ e-%t + e%t + non-contributing terms 

____ 
2Re (l@-k 5@k) = 2Re (l@’TkS@’k+) + 2Re (1@D+-k 5@)k) + constant terms, (4.20) 

where, from (3.14) and (3.13), 

(4.21) 

In  (4.21) it has now been possible to replace the coefficients D$;;gc by the 
coefficients Dg,$;,$a, as the frequencies wi in the former coefficient satisfy the 
relation wj = sjwk, when the &functions are non-zero. The last term in the second 
sum vanishes when summed over the indices @), as terms of opposite sign in 
(2) cancel. The first term in the second sum then cancels against the term 
proportional to t 2  in (4.14). Thus in the two expressions (4.14) and (4.21) repre- 
senting the first sum in (2.9) finally only the sums remain which change linearly 
in t. 

In  order to determine the second sum in (2.9), depending on the displacement 
amplitudes, we note again that the non-steady terms in the first sum result 
entirely from resonant interactions in which the perturbations n@D, are excited 
with their natural frequencies k w k ;  the steady higher-harmonic components 
with frequencies w $. 5 playing no direct part in the energy transfer. From the 
remark below equation (2.9), it  thus follows that the non-steady components 
of the second sum are equal to those of the first sum. 

Since the non-steady components of the perturbations are free waves of the 
same type as the first-order waves, we can now interpret the non-steady energy 
perturbations found above directly as perturbations of the two-dimensional 
energy spectrum. 

In  5 2, we found for the energy of the sea 

where 

(4.22) 
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and AE contains only cubic and higher-power products which were found to 
remain constant up to the sixth perturbation order. In  integral form, (4.22) 
becomes 

E = /j:IP(k)dkzdk,+AE, (4.23) 

where P(k) = 2%(k)+4P(k)+6f’(k)+... (4.24) 

is the general (non-linear) instantaneous space spectrum of the sea. In  the linear 
approximation, the Fourier components I@&) exp (ik. 2) are composed solely 
of two progressive sinusoidal waves 

,@$feXp [i(k)-iwkt] and eXp [i(k%) + i U k t ] ,  

so that we could separate the spectrum ,P(k) into two components ,F(k) and 
2F( - k), with $’(k) = +{,F(k) + 2F( - k)}, corresponding to the two directions 
of propagation of the waves. In  contrast to 2P(k), the spectrum ,F(k) describes 
the sea to the first order completely. The next spectral perturbation term 4P(k) 
remains constant and need not be considered. The term ,P(k) contains non- 
stationary components which again depend only on progressive waves of the 
type n@i exp [i(kft) T iwkt] ,  so that we can write 

,P(k) = +{,F(k) + J( - k)} + stationary terms. (4.25) 

The relation between ,F(k) and the terms entering in 6E is then found from 
(2.9), (4.13), (4.20), (4.23) and (4.25), 

(4.26) 

From (4.14) and (4.21) we then obtain 

x DLi::$” 6 ( w k  + S‘wY + s“* - S’”wk+k’+k”) 

x ,F(k) 2F(s’k) ,P(s”k”) dkLdkLdk:dki. (4.27) 

On account of the &functions in the integrands, the quadruple integrals are in 
reality only triple integrals over hypersurfaces in the four-dimensional (k’ x k”)- 
space. 

In  order to carry out the sums over the sign indices we note that successive 
application of (4.6) yields the inequality 

wkl - wk, - wk, 6 @k,+k,+k, 6 wk, + wkl + wkt, (4.28) 

the equality signs holding only for trivial cases in which the corresponding 
coefficients in (4.27) vanish. On account of (4.28), we need consider only those 
sign combinations in (4.27) in which two of the frequencies in the &functions 
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are positive and two negative. This gives three combinations for each integral, 
the combinations for the first integral yielding the same result for reasons of 
symmetry. Hence finally? 

W k )  __ = //lJ:l P(k‘) F(k”) F(k’+ k”- k) T,(k’, k”, k’ + k”- k) dk&ik;dk!dEi 
2t 

where 

In (4.29), the time derivative has been taken and the perturbation indices 
dropped. Whereas the validity of the original equation (4.27) is restricted to 
t sufficiently small to ensure ,F(k) << ,F(k), (4.29) is valid for all t provided the 
basic condition of a first-order Gaussian sea is not violated. Although there is 
no doubt that the non-linear interactions not only transfer energy but will also 
gradually destroy the initial Gaussian property of the sea, it  follows from our 
derivation that the influence of the latter process on the energy transfer is 
negligible. Since the non-stationary components of 6E were determined alone 
by covariance products between perturbation amplitudes having the same wave- 
number, the influence of non-Gaussian couplings between perturbation amplitudes 
with different wave-numbers is necessarily a higher-order effect which can be 
neglected for the time periods normally involved in the energy transfer process. 

Equation (4.29) canbe checked by thelaw of energy conservation, whichrequires 
that 

For arbitrary P(k) this gives the condition 

which is equivalent to the relation 

+ + -  + + -  + + -  + + -  
WksWk,Wkl WkrwkrWkl wk,wklwk, WklWkzWka 

DkB:k4:-ks+&;&l = Dkl;kB:-ka ; Dkl:kp:-ks (4.33) 

t Equation (4.29) was first cited and discussed briefly in connexion with the complete 
equation for the energy balance of a spectrum in the author’s 1960 paper. A short outline 
of the derivation is given in the 1961 paper. 
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for arbitrary k, satisfying the interaction conditions 

k,+k, = k3+k4, (4.34) 

"k, + "k, = "k, + %,. (4.35) 

Equation (4.33) was checked numerically for the case h = 00. 

By suitable transformation of the integration variables in the second integral, 
we can express both integrals in (4.29) in terms of a common S-function. Applying 
further (4.33), we obtain 

+,+,- 
- k) [F(k) - P(k')l - Dk+k"-k,k, -k" P(ktt) P(kt + kv 

"k+k"-k "k "k" 
+, +. - 

-Dk'+k"-kk,k*-k' P(k)F(k'+k'-k)[E'(k)-P(k)]] 

Equation (4.36) is more suitable than (4.29) for computational purposes and also 
for discussing certain aspects of the energy transfer. The last two terms in (4.36) 
and (4.31) differ only in that the integration variables are interchanged. They 
are written separately, however, in order to facilitate the following discussion. 

%'+k"-k "k "k' 

x s(0,. f W k " - @ y + k " - k - W k )  dkLdkbdkLdkL. (4.36) 

5. Interpretation and discussion 
Equations (4.29) and (4.36) can be interpreted in terms of quadruple inter- 

actions between three 'active ' wave components, which determine the inter- 
action rate, and a 'passive' fourth component, which receives energy from the 
first three components but has no direct influence on the interaction. In  (4.29), 
the first integral then expresses the energy gained by the component? k from 
all quadruple interactions in which k represents a 'passive' component, whereas 
the second integral expresses the energy lost by all interactions in which k is 
one of the three 'active' components. According to (4.30), we have TI 2 0, so 
that the energy gain is always positive (or zero). Although from (4.32) the total 
energy loss integrated over k is also positive, this is not necessarily the case for 
a particular value of k, so that the second integral may for some k represent an 
energy gain rather than a loss. 

The expression for the energy gain in (4.29) is independent of, but the loss 
proportional to, the value of the spectrum at k. The transfer process will thus 
generally tend to reduce sharp peaks in the spectrum and redistribute the energy 
more uniformly over all wave-numbers. Thus for wind-generated seas we may 
expect an energy flux from high to low wave-numbers in the initial period of 
development, when most of the energy is concentrated in the high wave-number 
region, and after development of the peak a t  low wave-numbers an energy flux 
in the reverse direction from low to high wave-numbers. 

The alternative expression for the energy balance in the form (4.36) is obtained 
by regrouping the transfer components of the interactions. An interaction 

t I n  accordance with the definition of P(k) ,  the component k refers always to the wave- 
component travelling in the positive k-direction. 
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between a group of four wave-numbers can take place if, and only if, the 
wave-numbers can be separated into two pairs, say (k,, k2) and (k3, k4), which 
satisfy the interaction conditions (4.34) and (4.35). If both conditions are 
satisfied, all four quadruple interactions corresponding to the four possibilities 
of choosing one ‘active’ and three ‘passive’ components take place. If the net 
energy change resulting from all four interactions is then evaluated for a par- 
ticular wave-number k in the group, the total rate of change of the spectrum 
at k can be expressed in the form (4.36) by integrating this net change over all 
groups of interacting wave-numbers. From (4.36), a number of interesting 
properties of the transfer process can immediately be inferred. (1) If all four 
values of the spectrum for an interacting group are equal, the net energy transfer 
of the group is balanced. Hence, in particular, the total energy transfer vanishes 
for the limiting case of a white, isotropic spectrum. (2) If the spectral values at  
three points of an interacting group are equal, we find, using (4.33), that the 
value of the spectrum at the fourth point changes in the direction of the first 
three values. A more general statement of this tendency to equidistribution can 
be made for arbitrary values of the spectrum if the three coefficient products in 
the integral (4.36) are negative not only in the sum (on account of (4.33)), but 
also individually. In  this case the net effect of all four interactions of a group is 
always to reduce the maximum and increase the minimum of the spectrum at 
the four points considered. (3) The net energy transfer of a group is balanced if 
the wave-number pairs (kl, k2), (k3, k4) are equal, irrespective of the values of 
the spectrum.? In  particular, this is always the case for a unidirectional spectrum. 
Equation (4.34) then becomes the scalar condition 

k , + k ,  = k3+k4 

k, < k3 < k4 < k,. 

Q(rE,) + Q(k,f G QZ(k3) + Q(U, 

which can be satisfied only if one wave-number pair lies within the other, say 

It can then readily be shown that, since y = R(k) is convex, 

the equality sign holding only for (k,, k,) = (k3 ,  k4). For a unidirectional spec- 
trum the interaction conditions (4.34) and (4.35) thus have only trivial solutions 
and the non-linear energy transfer vanishes (or, more precisely, is of smaller 
order than (4.29)). 

An indication of the order of magnitude of the energy flux for the general case 
of a two-dimensional spectrum can be obtained by dimensional analysis of (4.29). 
If a characteristic wave height c,, wavelength A, and wave period To (dependent 
on A, through TEg N A,) are introduced, we find for the characteristic time T 
of the energy transfer 

where 4. is the root mean square wave slope. Assuming the proportionality factor 
equal to unity (obviously a very crude procedure) we find for To = lOsec and 

t It has been shown by Longuet-Higgins & Phillips (1962) that in this case the tertiary 
waves lead to a change in phase velocity of the primary wave. 

T N T33-4, 

32-2 
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9 = 0.1, say, T = 28 h, which is comparable in magnitude to the development 
periods of wave spectra. 

A more reliable estimate of the magnitude and form of the non-linear energy 
flux has been obtained by computing (4.36) for a typical fully developed spectrum 
(Hasselmann 1961). Although the computer used, an IBM 650, was too small to 
achieve great accuracy, an energy flux was found, as expected, from the spectral 
peak at low wave-numbers to the low-energy region of dissipation at  higher 
wave-numbers. The characteristic time scales of the energy flux were found to 
be of the order of a few fractions of an hour for the shorter waves and a few hours 
for the longer waves. 

It is hoped to carry out a more detailed investigation of the non-linear energy 
transfer for a wider variety of cases, using larger computer facilities. Apart from 
influencing the final equilibrium status of fully developed wave spectra, it is 
possible that the non-linear interactions may also play an important role in the 
damping of swell travelling through local wind seas (predominance of the 
energy-loss integral in (4.29)), the scattering, including back-scattering, of 
waves leaving storm areas, and the aforementioned generation of very long 
waves by interactions between the shorter wind-generated waves. 

The author is indebted to Professor M. S. Longuet-Higgins for valuable com- 
ments on the first draft of this paper. 
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